Structure Reports

Online
ISSN 1600-5368

Jun Wan, Chun-Li Li, Xue-Mei Li and Shu-Sheng Zhang*

College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, 266042 Qingdao, Shandong, People's Republic of China

Correspondence e-mail: shushzhang@126.com

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.034$
$w R$ factor $=0.099$
Data-to-parameter ratio $=17.4$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
© 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

Acetonyl morpholine-4-carbodithioate

In the title molecule, $\mathrm{C}_{8} \mathrm{H}_{13} \mathrm{NO}_{2} \mathrm{~S}_{2}$, the morpholine ring adopts a chair conformation. In the crystal structure, a short intermolecular O \cdots S interaction [3.214 (2) A] links the molecules into spiral chains along the b axis.

Comment

Morpholine derivatives, as an important type of fungicides, have attracted much interest because of their inward absorbent and broad-spectrum activities (Badioli et al., 2002). Dialkyl-substituted dithiocarbamate salts have shown interesting biological effects as broad-range fungicides. In order to search for new morpholine compounds with high bioactivity, the title compound, (I), was synthesized. We present here its crystal structure.

(I)

The bond lengths and angles in (I) (Table 1) are within normal ranges (Allen et al., 1987) and comparable with those in a related compound (Köysal et al., 2004). The morpholine ring adopts a chair conformation (Fig. 1), with atoms O1 and N 1 deviating by -0.66 (2) and 0.57 (1) \AA, respectively, from the mean plane through atoms $\mathrm{C} 1-\mathrm{C} 4$. There are three intramolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{S}$ interactions (Table 2), each forming a five-membered ring. In the crystal structure, short intermolecular contacts O2 \cdots S 1^{i} [3.214 (2) \AA; symmetry code: (i) $\left.1-x,-\frac{1}{2}+y,-\frac{1}{2}-z\right]$ link the molecules into spiral chains along the b axis (Fig. 2).

Experimental

1-Bromoacetone was prepared by the reaction of acetone (3.7 ml , 0.05 mol) and bromine ($8.0 \mathrm{~g}, 2.6 \mathrm{ml}$) in anhydrous diethyl ether according to Xu et al. (2002). (4-Morpholinylcarbothioyl)sulfanylamine was prepared by reacting morpholine (3.9 ml , 0.05 mol) with carbon disulfide ($3.0 \mathrm{ml}, 0.05 \mathrm{~mol}$) in ammonia ($25-$ $28 \%, 10 \mathrm{ml}$). The title compound was synthesized by reacting 1 bromoacetone and (4-morpholinylcarbothioyl)sulfanylamine in acetone at room temperature for 2 h . The solution was filtered and purified by flash chromatography (silica gel, petroleum ether-ethyl acetate 6:1 (v / v). Single crystals suitable for X-ray diffraction study were obtained by slow evaporation of an ethyl acetate-petroleum ether (1:1 ($v / v)$ solution over a period of two weeks.

Received 22 June 2005
Accepted 30 June 2005
Online 9 July 2005

Crystal data

$\mathrm{C}_{8} \mathrm{H}_{13} \mathrm{NO}_{2} \mathrm{~S}_{2}$
$M_{r}=219.31$
Monoclinic, $P 2_{b} / c$
$a=15.043$ (2) А
$b=4.9119$ (7) \AA.
$c=17.1097$ (17) \AA
$\beta=123.848$ (8) ${ }^{\circ}$
$V=1050.0(2) \AA^{3}$
$Z=4$
$D_{x}=1.387 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 2917
reflections
$\theta=2.9-26.0^{\circ}$
$\mu=0.48 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Block, colourless
$0.50 \times 0.22 \times 0.07 \mathrm{~mm}$

Data collection

Siemens SMART 1000 CCD areadetector diffractometer
ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.797, T_{\text {max }}=0.968$
5540 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.034$
$w R\left(F^{2}\right)=0.099$
$S=1.07$
2048 reflections
118 parameters
H -atom parameters constrained

2048 independent reflections
1794 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.013$
$\theta_{\text {max }}=26.1^{\circ}$
$h=-18 \rightarrow 17$
$k=-5 \rightarrow 6$
$l=-11 \rightarrow 21$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0575 P)^{2}\right. \\
& \quad+0.1984 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.00 \\
& \Delta \rho_{\max }=0.20 \mathrm{e}^{2} \AA^{-3} \\
& \Delta \rho_{\min }=-0.19 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right)$.

S1-C5	$1.7754(16)$	$\mathrm{O} 1-\mathrm{C} 3$	$1.421(3)$
S1-C6	$1.7831(18)$	$\mathrm{N} 1-\mathrm{C} 5$	$1.330(2)$
S2-C5	$1.6604(16)$	$\mathrm{N} 1-\mathrm{C} 4$	$1.471(2)$
$\mathrm{O} 1-\mathrm{C} 2$	$1.405(3)$	$\mathrm{N} 1-\mathrm{C} 1$	$1.473(2)$
C5-S1-C6	$102.24(8)$	$\mathrm{N} 1-\mathrm{C} 5-\mathrm{S} 1$	$113.31(12)$
$\mathrm{N} 1-\mathrm{C} 5-\mathrm{S} 2$	$124.69(12)$	$\mathrm{S} 2-\mathrm{C} 5-\mathrm{S} 1$	$121.99(10)$

Table 2
Hydrogen-bond geometry ($\AA^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 1-\mathrm{H} 1 A \cdots \mathrm{~S} 1$	0.97	2.37	$2.901(3)$	114
C4-H4B $\cdots \mathrm{S} 2$	0.97	2.57	$3.048(2)$	111
C6-H6A 2 S	0.97	2.69	$3.057(2)$	103

All H atoms were located in difference Fourier maps and constrained to ride on their parent atoms, with $\mathrm{C}-\mathrm{H}$ distances in the range $0.93-0.97 \AA$ and with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used

Figure 1
View of (I), showing 50% probability displacement ellipsoids and the atom-numbering scheme.

Figure 2
The crystal packing, viewed approximately down the c axis, showing the short intermolecular $\mathrm{O} \cdots \mathrm{S}$ interactions (dashed lines).
to prepare material for publication: SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 2003).

This project was supported by the Program for New Century Excellent Talents in University (No. NCET-04-0649), and the Project of Educational Administration of Shandong Province (No. J04B12).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Badioli, M., Ballini, R., Bartolacci, M., Bosica, G., Torregiani, E. \& Marcantoni, E. (2002). J. Org. Chem. 67, 8938-8942.
Köysal, Y., Isik, S., Septioglu, E. \& Calis, U. (2004). Acta Cryst. C60, o757o758.
Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Xu, L. Z., Jiao, K., Zhang, S. S. \& Kuang, S. P. (2002). Bull. Kor. Chem. Soc. 23, 1699-1701.

